AC-DC Power Supplies Medical Type Instruction Manual | Gł | HA300F, GHA500F | GHA700F | |----|--|--| | 4 | E 0 | | | 1 | Function GHA-17 | 1 Function GHA-24 | | | 1.1 Input voltage range | 1.1 Input voltage range | | 2 | Series Operation and Parallel Operation GHA-18 | 2 Series Operation and Parallel Operation GHA-25 | | | 2.1 Series Operation GHA-18 2.2 Parallel Operation GHA-18 | 2.1 Series Operation GHA-25 2.2 Parallel Operation GHA-25 | | 3 | Temperature Measurement Point GHA-18 | Temperature Measurement Point GHA-25 | | | | | | 4 | Life Expectancy and Warranty GHA-20 | 4 Life Expectancy and Warranty GHA-26 | | | | | | 5 | Ground GHA-20 | 5 Ground GHA-27 | | | | | | 6 | Option and Others GHA-20 | 6 Option and Others GHA-27 | | | 6.1 Outline of options GHA-20 6.2 Medical Isolation Grade GHA-22 6.3 External capcitor on the output side GHA-23 6.4 Others GHA-23 | 6.1 Outline of options GHA-27 6.2 Medical Isolation Grade GHA-30 6.3 Extermal capcitor on the output side GHA-30 6.4 Others GHA-30 | # 1 Function #### 1.1 Input voltage range - ■The range is from AC90V to AC264V or DC130V to DC370V (please see SPECIFICATIONS for details). - ■In cases that conform with safety standard, input voltage range is AC100-AC240V (50/60Hz). - ■External DC fuse is required for safety reason in case of DC input. - (a) Recommended Capacity: 6.3A, slow-blow Fig.1.1 Connection method for DC input ■If input value doesn't fall within above range, a unit may not operate in accordance with specifications and/or start output voltage humting or fail. If you need to apply a square waveform input voltage, which is commonly used in UPS and inverters, please contact us. ■When the input voltage changes suddenly, the output voltage accuracy might exceed the specification. Please contact us. ## 1.2 Inrush current limiting - ■An inrush current limiting circuit is built-in. - ■If you need to use a switch on the input side, please select one that can withstand an input inrush current. - ■Thermistor is used in the inrush current limiting circuit. When you turn the power ON/OFF repeatedly within a short period of time, please have enough intervals so that a power supply cools down before being turned on. - ■Surge current in the filter unit does not include. (0.2ms or less). #### 1.3 Overcurrent protection ■An overcurrent protection circuit is built-in and activated over 105% of the rated current. A unit automatically recovers when a fault condition is removed. Please do not use a unit in short circuit and/or under an overcurrent condition. ■Hiccup Operation Mode Hiccup operation for overcurrent protection is included in a part of series. When the overcurrent protection circuit is activated and the output voltage drops to a certain extent, the output becomes hiccup so that the average current will also decrease. #### 1.4 Overvoltage protection ■An overvoltage protection circuit is built-in. If the overvoltage protection circuit is activated, shut down the input voltage, wait more than 3 minutes and turn on the AC input again to recover the output voltage. Recovery time varies depending on such factors as input voltage value at the time of the operation. #### Remarks: Please avoid applying a voltage exceeding the rated voltage to an output terminal. Doing so may cause a power supply to malfunction or fail. If you cannot avoid doing so, for example, if you need to operate a motor, etc., please install an external diode on the output terminal to protect the unit. #### 1.5 Thermal protection - ■Over Temperature Protection (OTP) is built in. - ■If this function is in operation, turn off power, eliminate all possible causes of overheating, and drop the temperature to nomal level. Output voltage recovers after applying input voltage. The recovery time varies depending on input voltage and load condition. - 1)Over rated temperature - (2)Poor ventilation - ③Over load #### Remarks: Please comply with recommended mounting method in section ### 1.6 Output voltage adjustment range ■To increase an output voltage, turn a built-in potentiometeris clockwise. To decrease the output voltage, turn it counterclockwise #### 1.7 Output ripple and ripple noise ■Output ripple noise may be influenced by measurement environment, measuring method Fig.1.2 is recommended. C1: Film capacitor 0.1µF C2: Aluminum electrolytic capacitor 22µF Fig.1.2 Measuring method of Ripple and Ripple Noise When GND cable of probe with flux of magnetic force from power supply are crossing, ripple and ripple noise might not measure correctly. Please note the measuring environment. Bad example Good example Fig.1.3 Example of measuring output ripple and ripple noise June 07, 2023 www.cosel.co.jp/en/ #### 1.8 Isolation - ■For a receiving inspection, such as Hi-Pot test, gradually increase (decrease) the voltage for the start (shut down). Avoid using Hi-Pot tester with the timer because it may generate voltage a few times higher than the applied voltage, at ON/OFF of a timer. - ■When you test a unit for isolation between the input and output, input and the terminal FG or between the output and the terminal FG, short-circuit between the output and the terminals RCG, PGG and AUXG # 2 Series Operation and **Parallel Operation** #### 2.1 Series Operation ■Series operation is available by connecting the outputs of two or more power supplies with the same output voltage, as shown below. Output current in series connection should be lower than the lowest rated current in each unit. #### Remarks : Please be sure to have enough cooling in case one of the power supply stops due to activation of the protection circuitry. Fig.2.1 Examples of connecting in series operation #### 2.2 Parallel Operation ■Parallel operation Parallel operation is possible with option "-P". Parallel operation is not available for the standard unit, please refer to the listed options. ■Redundancy operation Redundancy operation is available by wiring as shown below. Fig.2.2 Example of redundancy operation ■Even a slight difference in output voltage can affect the balance between the values of I₁ and I₂. Please make sure that the value of I3 does not exceed the rated current of a power supply. $I_3 \le$ the rated current value Please evaluate carefuly and test for any possible failure modes. ■Hot-swap or Hot-plug is not available. # 3 Temperature Measurement Point #### GHA500F ■Cooling method Conduction cooling, forced air and convection cooling are avail- The combination of the cooling method makes mechanical design Fig.3.1 Cooling method Combination In order to determine if the power supply operates according to our specifications, the maximum operating temperature and temperature measuring points are shown in table 3.1., for reference. #### GHA300F ■Cooling method Both Forced air and convection cooling are available. (Fig 3.1 1),3),6)cooling method). - ■For proper operation of the power supply, please note the following: - · The temperature rise and heat dissipation of the converter must be considered. - · Conditions varies with environment and input voltage. - · Mounting surface will be very hot during the operation ,so please be careful not to touch the surface. - · GHA500F series can achieve the efficient heat dissipation by combining Conduction cooling and Forced air cooling. However, if the cooling fan stops due to the fan failure or other reason, Over Temperature Protection may not be activated due to the conduction cooling, and then the components temperature which are cooled by forced air (1), (2), (3) and (4) shown in table 3.1) would become high. Please ensure fail safe function of your product, and consult us for more details. #### GHA300F/500F ■Given the potential for variation between one application and another, the real test is to measure the critical components temperature rise when the power supply installed in the end-application. For reliable and safe operation, please make sure the maximum component temperatures rise given in table 3.1 is not exceeded. Operating at the maximum temperature rating results in 3-Years life expectancy. The actual life expectancy can be extended by reducing the ambient temperature. Please refer to section 4 for more information. #### ■Test Measuring points Be aware of the conductive parts during the measurements. Please contact us for more detail. (a)Upper substrate (b)Lower substrate Fig.3.2 Temperature measurement points locations Table 3.1 Maximum operating temperature | Point | Parts name | Symbol
No. | Maximum
temperature[℃] | | Remarks | |-------|---------------------|---------------|---------------------------|------|------------------| | | | INO. | 500F | 300F | | | 1 | Line Filter | L101 | 115 | 115 | | | 2 | Varistor | SK101 | 76 | 76 | | | 3 | Input Capacitor | C106 | 89 | 89 | | | 4 | Output Capacitor | C506 | 87 | 87 | | | (5) | Rectifier | SS11 | 120 | 120 | case temperature | | 6 | Transformer | T11 | 110 | 110 | | | 1 | Output Choke | L51 | 115 | 115 | | | 8 | Aluminum base plate | - | * | - | | ^{*}Operating ambient temperature derating of Conduction cooling (Fig.3.3) Fig.3.3 Conduction cooling derating curve (Reference value) ### GHA500F Fig.3.4 Convection cooling derating curve (Reference value) #### GHA300F Fig.3.5 Convection cooling derating curve (Reference value) # 4 Life Expectancy and Warranty #### ■Life Expectancy. Table 4.1 Life Expectancy (GHA500F-□) | Cooling | Mounting | Average ambient | Life Exp | ectancy | |------------|-------------|--------------------|-----------------|---------------------------------| | Method | Method | temperature (year) | lo≦75% | 75% <lo≦100%< td=""></lo≦100%<> | | | A C D | Ta = 35°C or less | 10years or more | 6years | | | A, C, D | Ta = 40°C | 7years | 4years | | Convection | В | Ta = 45°C | 10years or more | 7years | | Convection | Е | Ta = 30°C or less | 10years or more | 7years | | | | Ta = 35℃ | 7years | 5years | | | F | Ta = 30°C | 10years or more | 7years | | Forced air | A,B,C,D,E,F | Ta = 40°C or less | 10years or more | 10years or more | | Forced all | A,D,U,D,E,F | Ta = 50°C | 10years or more | 10years or more | Table 4.2 Life Expectancy (GHA300F-□) | Cooling | Mounting | Average ambient | Life Exp | ectancy | |------------|-------------|--------------------|-----------------|---------------------------------| | Method | Method | temperature (year) | lo≦75% | 75% <lo≦100%< td=""></lo≦100%<> | | | Α | Ta = 30°C | 10years or more | 10years or more | | | B, C | Ta = 45°C | 10years or more | 7years | | Convection | D | Ta = 45°C | 10years or more | 10years or more | | | E | Ta = 40°C or less | 10years or more | 9years | | | | Ta = 45°C | 10years or more | 6years | | Forced air | A,B,C,D,E,F | Ta = 40°C or less | 10years or more | 10years or more | | roiced all | A,B,C,D,E,F | Ta = 50°C | 10years or more | 10years or more | #### Remarks: Estimated life expectancy can be calculated by point temperature (3),(4) shown in section 3.1. Please contact us for details. #### ■Warranty Table 4.3 Warranty (GHA500F-□) | rable ite trainanty (or a tooti =) | | | | | | |------------------------------------|-------------|--------------------------|--------|---------------------------------|--| | Cooling | Mounting | Mounting Average ambient | | arranty | | | Method | Method | temperature (year) | lo≦75% | 75% <lo≦100%< td=""></lo≦100%<> | | | | A, C, D | Ta = 35°C or less | 5years | 5years | | | | A, C, D | Ta = 40°C | 5years | 3years | | | Convection | В | Ta = 45℃ | 5years | 5years | | | Convection | E | Ta = 30°C or less | 5years | 5years | | | | | Ta = 35℃ | 5years | 4years | | | | F | Ta = 30°C | 5years | 5years | | | Forced air | A,B,C,D,E,F | Ta = 40°C or less | 5years | 4years | | | roiced all | A,D,U,D,E,F | Ta = 50°C | 5years | 3years | | Table 4.4 Warranty (GHA300F-□) | Cooling | Mounting | Average ambient | Warı | ranty | |------------|-------------|--------------------|--------|---------------------------------| | Method | Method | temperature (year) | lo≦75% | 75% <lo≦100%< td=""></lo≦100%<> | | | Α | Ta = 30°C | 5years | 5years | | | B, C | Ta = 45°C | 5years | 5years | | Convection | D | Ta = 45°C | 5years | 5years | | | Е | Ta = 40°C or less | 5years | 5years | | | | Ta = 45°C | 5years | 4years | | Forced air | A,B,C,D,E,F | Ta = 40°C or less | 5years | 4years | | roiced all | A,D,U,D,E,F | Ta = 50°C | 5years | 3years | ^{*}Warranty with conduction cooling is three years at the highest point of the temperature measurement. # 5 Ground ■In the case of the power installation, please be sure to connect two or more Input FG and mounting hole FG with safety ground of the chassis. # 6 Option and Others #### 6.1 Outline of options - ■Option -J1 models, the connector is J.S.T connector. - –J2 (R3 or SNF to be combined) - ■CN501 connector is changed to friction locks type.(Mfr. Molex) - **J** –J3 - ■The input connector is VH connectors (Mfr. J.S.T.) and the connector is oriented horizonatally. - ■Please contact us for details about appearance. Fig.6.1 Example of option -J3 #### ● -R3, -SNF - ■The following features are included. - ■Dedicated harness. Please refer to the optional parts. - ■AUX1 (12V±10%* -R3:1.0A, -SNF:0.5A) - This power supply is equipped with an axuiliary low power 12V* output AUX1 which is available from CN501. - AUX has been isolated from other circuit (input, output, FG, RC, PG). - Do not exceed the current rating, it may causes malfunction or failure of the internal circuitry. - * GHA300F-SNF: 10V±10% #### ■AUX2 (5V1A) - Output AUX2 will be generated from CN501. AUX2 (5V±5% 1.0A) can be used to power up remote control or other circuits. AUX has been isolated from other circuit (input, output, FG, RC, PG). - Do not exceed the current rating, it may causes malfunction or failure of the internal circuitry. - · When the load currnet changes rapidly, for output stability improvement, we recommend that you connect the capacitor to the output terminal. Table 6.1 External capacitor on the recommended capacity of AUX2 | Output Voltage | recommended capacity [µ F] GHA300/500F | | |----------------|---|--| | 5V (AUX2) | 330 ~ 560 | | Please note that the ripple voltage of the main output may increase when the output current of AUX 2 is 0.1A or lower. #### ■Alarm • Table 6.2, see Fig 6.2 the internal structure circuit explaining the operation of the PG alarm. Table 6.2 Description of the alarm | | Alarm output condition | Alarm output | |----|--|---| | PG | Or lowering of the rated output voltage, output PG, PGG from terminal when you stop. ① Output is unstable state when the overcurrent condition ② The LV alarm is not isolated from output.Therefore, make sure all connections are correct when the power supply is used to supply negative voltage or is operated in series. | Open collector method Good : Low(0-0.5V 10mA max) Bad : High or Open(40V 0.5mA max) | Fig.6.2 Internal circuit of PG #### ■Remote ON/OFF - You can operate the remote ON/OFF function by sending signals to CN501. Please see Table 6.3 for specifications and Fig.5.3 for connecting examples. - Remote ON/OFF circuits (RC and RCG) are isolated from input, output FG, AUX and PG. - Please note the followings when using the remote ON/OFF function. - 1-R3 turns on by drawing current to RC, -SNF turns off by drawing current to RC. - 2) The current flown to RC is a 5mA typ (maximum 30mA). - (3)If the output voltage is turned off through the remote ON/OFF circuit, 12V* AUX stops. - (4) If the output voltage is turned off through the remote ON/OFF circuit, PG signals turn to "High". - (§) If voltage or current of a value not listed in Table 6.3 is applied between RC and RCG, the output voltage may not be generated normally. - ®Please wire carefully. If you wire wrongly, the internal components of a unit may be damaged. - * GHA300F-SNF: 10V Table 6.3 Specifications of remote ON/OFF | | • | | | |------------------|----------------------------|----------------|-------------| | Fig.6.3 RC c | Fig.6.3 RC circuit example | | -SNF | | | Output on | SW close | SW open | | CWLogio | Output on | (3mA min) (0.1 | (0.1mA max) | | SW Logic | Outrot off | SW open | SW close | | | Output off | (0.1mA max) | (3mA min) | | Ontions | l harnasa | H-SN-34 | | | Optional harness | | or H-SN-35 | | (Example V1 : 5V R1 : 270 Ω) Fig.6.3 RC circuit example * If the output of an external power supply is within the range of 4.5 - 12.5V, you do not need a current limiting resistor R1. If the output exceeds 12.5V, however, please connect the current limiting resistor R1. To calculate a current limiting resistance value, please use the following equation. R1[$$\Omega$$]= $\frac{\text{V1-(1.1+Ri}\times0.005)}{0.005}$ Ri=440[Ω] - ■Chassis and a cooling fan are added. - ■Oil and chemical environment may cause of power supply's malfunction or failure. Please avoid operation and storage in such environments. #### ■Derating It should be satisfied that derating curve depending on input voltage and on ambient temperature in "Derating". As the verification method, temperature of measurement point A should be rated temperature or less in Table 6.4. Fig.6.4 Measurement point A Table 6.4 Rated temperature of measurement point A | Management | Ambient temperature | | | |------------|---------------------|--------------|--| | Measurment | 50℃ | 70℃ | | | Point A | 65°C or less | 78°C or less | | ■When output current more than rated, output may shut down after 5 seconds or more. Recycle the input after 3 minutes to reset the protection. #### ■Maintenance of FAN FAN life time expectancy (R(t)=90%) in Fig.6.5 is depended on measurement point temperature in Fig.6.6, which exhaust air temperature from FAN at input terminal side. If load wires are generating heat, intake air temperature may become high. It may influence to FAN exhaust temperature. It is a notice that optical wires have to be selected for the avoidance. When FAN stop or air volume decrease happen, power supply's output will be shut down. Fig.6.5 Expected life time of FAN Fig.6.6 Measurement of FAN exhaust temperature ■M3 threaded mounting hole is available as an option (-T3). (a) T3 (Threaded mounting hole) (b) Standard (Through hole) Fig.6.7 Screw mounting image - ■Parallel operation is available (Recommended two). - ■Output wattage setting is 90% per power supply of MAX OUTPUT WATTAGE. #### Remarks: - · The difference of output voltage between power supply for parallel operation should be less 0.1V. - · During parallel operation, higher voltage power supply become the master in system. Depend on voltage difference between master and slave, the master power supply may recover the system's required wattage up to 90% of MAX OUTPUT WATT-AGE. The master unit should be evaluated for heat dissipation, life expectancy and warranty period according to derating and Section4 · Parallel operation, due to the fluctuation of load, the output voltage may be varied. There is a possibility that beat noise occurs due to the difference of the oscillation frequency. Please use after enough evaluation. - · Forced air cooling is required. - · Input voltage ought be AC115V or more. #### 6.2 Medical Isolation Grade ■GHA series fit 2MOPP Fig.6.8 Medical Isolation Grade #### 6.3 Extermal capcitor on the output side ■When the load currnet changes rapidly, for output stability improvement, we recommend that you connect the capacitor to the output terminal. Tabel 6.5 External capacity on the output recommended capacity [µF] | | Output Voltage
[V] | Recommended capacity [µF] | |------------|-----------------------------------|---------------------------| | GHA300F-12 | 10.8≦Vo≦13.2 | 2,200 to 22,000 | | GHA500F-12 | 10.0≧ 00≥ 13.2 | 2,200 10 22,000 | | GHA500F-15 | 13.5≦Vo≦16.5 | 2,200 to 10,000 | | GHA300F-24 | 21.6≦Vo≦26.4 | 3.300 to 8.800 | | GHA500F-24 | 21.0 \(\text{V}\) \(\text{20.4}\) | 3,300 10 6,600 | | GHA500F-30 | 27.0≦Vo≦31.5 | 3,300 to 8,800 | | GHA300F-48 | 43.2≦Vo<51.0 | 0 to 1,000 | | GHA500F-48 | 51.0≦Vo≦52.8 | 0 to 120 | | GHA500F-56 | 52.0≦Vo≦56.0 | 0 to 120 | #### Remarks: When load current changes rapidly, some specifications may not meet the spec. Please mount power supply after enough evaluation and comply with recommended amount of capacitor. If you exceed the rated amount of capacitor, output for power supply may be stopped or power supply may be unsteable. #### 6.4 Others - ■High voltage exist in the power supply for a few minutes after input voltage is stopped. Please pay attention to this during the maintence. - ■Notes for mounting - 1) All Mounting holes should be tight and secured. - (2) Power supply should be mounted parallel to the mounting surface. - (3) Avoid applying mechanical stress or shock to the power supply. - ■When power supply is energized or immidately after power supply stops working, power supply is still very hot, so please handle it with care. # 1 Function #### 1.1 Input voltage range - ■The range is from 85VAC to 264VAC. In cases that conform with safety standard, input voltage range is 100VAC to 240VAC (50/60Hz). - ■If input value doesn't fall within above range, a unit may not operate in accordance with specifications and/or start humting or fail. If you need to apply a square waveform input voltage, which is commonly used in UPS and inverters, please contact us. - ■When the input voltage changes suddenly, the output voltage accuracy might exceed the specification. Please contact us. #### 1.2 Inrush current limiting - ■An inrush current limiting circuit is built-in. - ■If you need to use a switch on the input side, please select one that can withstand an input inrush current. - ■Thermistor is used in the inrush current limiting circuit. When you turn the power ON/OFF repeatedly within a short period of time. please have enough intervals so that a power supply cools down before being turned on. - ■Surge current in the filter unit does not include. (0.2ms or less). #### 1.3 Overcurrent protection ■An overcurrent protection circuit is built-in and activated over 105% of the rated current. A unit automatically recovers when a fault condition is removed. Please do not use a unit in short circuit and/or under an overcurrent condition. - ■Hiccup Operation Mode When the output voltage drops at overcurrent, the average output current is reduced by hiccup operation of power supply. - ■When the overcurrent protection continues, the output will be shut down. - ■Output voltage recovers from overcurrent protection by shutting down the input voltage and waiting more than 3 minutes then turning on AC input again. ### 1.4 Overvoltage protection ■An overvoltage protection circuit is built-in. If the overvoltage protection circuit is activated, shut down the input voltage, wait more than 3 minutes and turn on the AC input again to recover the output voltage. Recovery time varies depending on such factors as input voltage value at the time of the operation. #### Remarks: Please avoid applying a voltage exceeding the rated voltage to an output terminal. Doing so may cause a power supply to malfunction or fail. If you cannot avoid doing so, for example, if you need to operate a motor, etc., please install an external diode on the output terminal to protect the unit. #### 1.5 Thermal protection - ■Over Temperature Protection (OTP) is built in. - ■If this function is in operation, turn off power, eliminate all possible causes of overheating, and drop the temperature to nomal level. Output voltage recovers after applying input voltage. The recovery time varies depending on input voltage and load condition - 1)Over rated temperature - (2)Poor ventilation - ③Over load #### Remarks: Please comply with recommended mounting method in section 3. ## 1.6 Output voltage adjustment range ■To increase an output voltage, turn a built-in potentiometeris clockwise. To decrease the output voltage, turn it counterclockwise #### 1.7 Output ripple and ripple noise ■Output ripple noise may be influenced by measurement environment, measuring method Fig.1.1 is recommended. C1: Film capacitor 0.1µF C2: Aluminum electrolytic capacitor 22µF Fig.1.1 Measuring method of Ripple and Ripple Noise #### Remarks: When GND cable of probe with flux of magnetic force from power supply are crossing, ripple and ripple noise might not measure correctly. Please note the measuring environment. Fig.1.2 Example of measuring output ripple and ripple noise #### 1.8 Isolation - ■For a receiving inspection, such as Hi-Pot test, gradually increase (decrease) the voltage for the start (shut down). Avoid using Hi-Pot tester with the timer because it may generate voltage a few times higher than the applied voltage, at ON/OFF of a timer. - ■When you test a unit for isolation between the input and output, input and the terminal FG or between the output and the terminal FG, short-circuit between the output and the terminals RCG, PGG and AUXG # 2 Series Operation and **Parallel Operation** #### 2.1 Series Operation ■Series operation is available by connecting the outputs of two or more power supplies with the same output voltage, as shown below. Output current in series connection should be lower than the lowest rated current in each unit. #### Remarks: Please be sure to have enough cooling in case one of the power supply stops due to activation of the protection circuitry. Fig.2.1 Examples of connecting in series operation ## 2.2 Parallel Operation - ■Parallel operation is not possible. - ■Redundancy operation Redundancy operation is available by wiring as shown below. Fig.2.2 Example of redundancy operation ■Even a slight difference in output voltage can affect the balance between the values of I₁ and I₂. Please make sure that the value of I₃ does not exceed the rated current of a power supply. $I_3 \le$ the rated current value Please evaluate carefuly and test for any possible failure modes. ■Hot-swap or Hot-plug is not available. # 3 Temperature Measurement Point #### ■Cooling method Conduction cooling, forced air and convection cooling are avail- The combination of the cooling method makes mechanical design flexible Fig.3.1 Cooling method Combination In order to determine if the power supply operates according to our specifications, the maximum operating temperature and temperature measuring points are shown in table 3.1, for reference. - ■For proper operation of the power supply, please note the following: - · The temperature rise and heat dissipation of the converter must be considered. - · Conditions varies with environment and input voltage. - · Mounting surface will be very hot during the operation, so please be careful not to touch the surface. - · GHA700F series can achieve the efficient heat dissipation by combining Conduction cooling and Forced air cooling. However, if the cooling fan stops due to the fan failure or other reason, Over Temperature Protection may not be activated due to the conduction cooling, and then the components temperature which are cooled by forced air would become high. Please ensure fail safe function of your product, and consult us for more details. ■Given the potential for variation between one application and another, the real test is to measure the critical components temperature rise when the power supply installed in the end-application. For reliable and safe operation, please make sure the maximum component temperatures rise given in table 3.1 is not exceeded. Operating at the maximum temperature rating results in 3-Years life expectancy. The actual life expectancy can be extended by reducing the ambient temperature. Please refer to section 4 for more information. #### ■Test Measuring points Be aware of the conductive parts during the measurements. Please contact us for more detail. Fig.3.2 Temperature measurement points locations Table 3.1 Maximum operating temperature | Point | Parts name | Symbol
No. | Maximum temperature[℃] | Remarks | |-------|-----------------------|---------------|-----------------------------|------------------| | 1 | Line Filter | L101 | 90 | | | 2 | Rectifier | SS101 | 117 | case temperature | | 3 | Input Capacitor | C117 | 93(Po≤400W),
89(Po>400W) | | | 4 | Transformer (Winding) | T201 | 110 | | | (5) | Transformer (Winding) | T301 | 105 | | | 6 | Silkscreen on PCB | - | 110 | | | (7) | Chassis | - | 80 * | | *Operating chassis temperature derating of Conduction cooling (Fig.3.3) Fig.3.3 Conduction cooling derating curve (Reference value) Fig.3.4 Convection cooling derating curve (Reference value) # 4 Life Expectancy and Warranty #### ■Life Expectancy. Table 4.1 Life Expectancy | Cooling | Mounting | Average ambient | Life Expectancy | | | |------------|----------|--------------------|-----------------|--|----------------------------------| | Method | Method | temperature (year) | Po≦200W | 200W <po≦300w< td=""><td>300W<po≦400w< td=""></po≦400w<></td></po≦300w<> | 300W <po≦400w< td=""></po≦400w<> | | | | Ta = 30°C or less | 10years or more | 10years or more | 3years | | | Α | Ta = 40°C | 10years or more | lyears or more 4years - | - | | | | Ta = 50°C | 4years | - | - | | | | Ta = 25°C or less | 10years or more | 10years or more | 3years | | Convection | B, C | Ta = 40°C | 10years or more | Oyears or more 4years | - | | | | Ta = 50°C | 4years - | - | | | | | Ta = 20°C or less | 10years or more | 10years or more | 3years | | | D, E, F | Ta = 30°C | 10years or more | 4years | - | | | | Ta = 40°C | 4years | - | - | | Cooling | Mounting | Average ambient | Life Expectancy | | |----------------------------------|----------|-------------------|----------------------------------|-----------------| | Method Method temperature (year) | | Po≦400W | 400W <po≦700w< td=""></po≦700w<> | | | Forced air | A, B, C, | Ta = 40°C or less | 10years or more | 10years or more | | Forced air | D, E, F | Ta = 50°C | 10years or more | 10years or more | #### Remarks: Estimated life expectancy can be calculated by point temperature ③ shown in section 3. Please contact us for details. #### ■Warranty Table 4.2 Warranty | Cooling | Mounting | Average ambient | Warranty | | | |------------|----------|--------------------|-----------------|---|----------------------------------| | Method | Method | temperature (year) | Po≦200W | 200W <po≦300w< td=""><td>300W<po≦400w< td=""></po≦400w<></td></po≦300w<> | 300W <po≦400w< td=""></po≦400w<> | | | | Ta = 30°C or less | 5years | 5years | 2years | | | A | Ta = 40°C | 5years | 3years - - 5years 5years 2years | - | | | | Ta = 50°C | 3years | | | | | | Ta = 25°C or less | 5years | 5years | 2years | | Convection | B, C | Ta = 40°C | 5years 3years - | - | | | | | Ta = 50°C | | - | | | | - | Ta = 20°C or less | 5years | 5years | 2years | | | D, E, F | Ta = 30°C | 5years | 3years | - | | | | Ta = 40°C | 3years | - | - | | Cooling | Mounting | Average ambient | Warranty | | |----------------------------------|----------|-------------------|----------------------------------|--------| | Method Method temperature (year) | | Po≦400W | 400W <po≦700w< td=""></po≦700w<> | | | Forced air | A, B, C, | Ta = 40°C or less | 5years | 5years | | Forced air | D. E. F | Ta = 50°C | 5vears | 3vears | ^{*}Warranty with conduction cooling is three years at the highest point of the temperature measurement. # 5 Ground - ■When installing the power supply with your unit, ensure that the input FG terminal of CN1 or mounting hole FG is connected to safety ground of the unit. - *It is recommended to electrically connect terminal FG and mounting hole FG to metal chassis of customer for reducing noise. # **Option and Others** ## 6.1 Outline of options #### **-**C ■Option -C models have coated internal PCB for better moisture resistance. #### **-**F - ■The option E is for IEC Class II equipment by providing additional insulation external to the power supply. - ■The differences between the option E models and the standard models are shown below. Table 6.1 Option F type | | 145.6 6.7 6 6.6.1 = 1,766 | | |-----------------|---|--| | | GHA700F-⊡-EJ1 | | | Conducted Noise | Complies with FCC-A, VCCI-A, CISPR32-A, | | | Conducted Noise | EN55011-A, EN55032-A | | | ICOL ATION | INPUT - FG : N/A | | | ISOLATION | OUTPUT-FG : N/A | | - ■AC voltage exist on the primary side. Therefore, in order to prevent electric shock, or to meet the leakage current requirements of the safety standard, you need to ensure the proper insolation - ■During use, keep the distance between d1 & d2 for to insulate between component and metal case, use the insulated spacer of 6mm or more between d2. If it is less than d1 & d2, insert the insulation sheet between power supply and metal case. Fig.6.1 Installation method(GHA700F-_-EJ1) #### -R3 - ■The following features are included. - ■Dedicated harness. Please refer to the optional parts. - ■AUX1 (12V±10% Convection: 0.4A, Conduction cooling, Forced air: 1.0A) - · This power supply is equipped with an axuiliary low power 12V output AUX1 which is available from CN2. - · AUX has been isolated from other circuit (input, output, FG, RC, - · Do not exceed the current rating, it may causes malfunction or failure of the internal circuitry. - ■AUX2 (5V Convection: 0.4A, Conduction cooling, Forced air: 1.0A) - · Output AUX2 will be generated from CN2. AUX2 (5V±5% 1.0A) can be used to power up remote control or other circuits. AUX has been isolated from other circuit (input, output, FG, RC, - · Do not exceed the current rating, it may causes malfunction or failure of the internal circuitry. - · When the load currnet changes rapidly, for output stability improvement, we recommend that you connect the capacitor to the output terminal. Table 6.2 External capacitor on the recommended capacity of AUX2 | Output Voltage | recommended capacity [µ F] | |----------------|-----------------------------| | Output Voltage | GHA700F | | 5V (AUX2) | 0 ~ 270 | · Table 6.3, see Fig 6.2 the internal structure circuit explaining the operation of the PG alarm. Table 6.3 Description of the alarm | | Alarm output condition | Alarm output | |----|---|--| | PG | Or lowering of the rated output voltage, output PG, PGG from terminal when you stop. ① Output is unstable state when the overcurrent condition ② The LV alarm is not isolated from output.Therefore, make sure all connections are correct when the power supply is used to supply negative voltage or is operated in series. | Open collector method
Good : Low(0-0.5V 10mA max)
Bad : High or Open(40V 0.5mA max)
Tr : 40V 10mA max | Fig.6.2 Internal circuit of PG #### ■Remote ON/OFF - · You can operate the remote ON/OFF function by sending signals to CN2. Please see Table 6.4 for specifications and Fig.6.3 for connecting examples. - · Remote ON/OFF circuits (RC and RCG) are isolated from input, output FG, AUX and PG. - · Please note the followings when using the remote ON/OFF function. - (1) -R3 turns on by drawing current to RC. - (2) The current flown to RC is a 5mA typ (maximum 25mA). - (3)If the output voltage is turned off through the remote ON/OFF circuit, AUX1 (12V) stops. - (4)If the output voltage is turned off through the remote ON/OFF circuit, PG signals turn to "High". - (5)If voltage or current of a value not listed in Table 6.4 is applied between RC and RCG, the output voltage may not be generated normally. - (6) Please wire carefully. If you wire wrongly, the internal components of a unit may be damaged. Table 6.4 Specifications of remote ON/OFF | | • | | |---------------|---------------|---------------------| | Fig.6.3 RC ci | rcuit example | –R3 | | CW Logio | Output on | SW close (3mA min) | | SW Logic | Output off | SW open (0.1mA max) | | Optional | harness | H-SN-79 | Fig.6.3 RC circuit example * If the output of an external power supply is within the range of 4.5 - 12.5V, you do not need a current limiting resistor R1. If the output exceeds 12.5V, however, please connect the current limiting resistor R1. To calculate a current limiting resistance value, please use the following equation. R1[$$\Omega$$]= $\frac{\text{V1-(1.1+Ri}\times0.005)}{0.005}$ Ri=780[Ω] #### ■ -T3 ■M3 threaded mounting hole is available as an option T3. (a) T3 (Threaded mounting hole) (b) Standard (Through hole) Fig.6.4 Screw mounting image #### –U1 ■By connecting the external capacitor unit CR-HUT (optional parts) to CN3, Hold-up time is extendable. Fig.6.5 Hold-up time by GHA700F- -J1U1 (Reference data) ■A unit can operate under the input voltage dip with derating. Table 6.5 shows the the output power. Tabel 6.5 Output power for IEC60601-1-2 Criteria A | Voltage dip | Duration [ms] | Output Power | |----------------|---|-------------------------| | 100VAC → 0VAC | 20 | Po ≤ 610W | | | YAC 100 $Po \le 420W (0)$ Po ≤ 610W (0) | Po ≤ 280W (CR-HUT241-1) | | 100VAC → 40VAC | | Po ≤ 420W (CR-HUT721-1) | | TOUVAC → 40VAC | | Po ≤ 610W (CR-HUT282-2) | | | | Po ≤ 610W (CR-HUT502-2) | | 100VAC → 70VAC | 500 | Po ≤ 610W | | 240VAC → 0VAC | 20 | Po ≤ 700W | | 240VAC → 0VAC | 100 | Po ≤ 700W | | 240VAC → 0VAC | 500 | Po ≤ 700W | Fig.6.6 CN2, CN3 locations (GHA700F- -J1U1) Table 6.6 Pin assignments of CN2, CN3 (GHA700F-□-J1U1) | <cn2></cn2> | | | |-------------|-------------------|--| | Pin No. | Function | | | 1 | NC | | | 2 | NC | | | 3 | ALM :ALARM | | | 4 | ALMG :ALARM (GND) | | | 5 | NC | | | 6 | NC | | | 7 | NC | | | 8 | NC | | | <cn3></cn3> | | |-------------|----------| | Pin No. | Function | | 1 | VC(-) | | 2 | | | 3 | VC(+) | * Pin No.2 is NC at CN3. - *Do not connect anything to an NC pins. - *Pin No.6 is not isolated from the main output circuit. Do not let the output wires get close to the Pin No.6. Table 6.7 Mating connector and terminal (GHA700F-\(\pri\)-J1U1) | | Connector | Mating connector | Terminal | Mfr | |-----|------------|------------------|--|---------| | CN2 | B8B-PHDSS | PHDR-08VS | SPHD-002T-P0.5
(AWG28-24)
SPHD-001T-P0.5
(AWG26-22) | J.S.T. | | CN3 | BH2P3-VH-1 | VHR-3N | SVH-21T-P1.1
(AWG22-18)
SVH-41T-P1.1
(AWG20-16) | J.S. I. | #### ■Connection method Fig.6.7 Connection method #### Caution - · Distance between the external capacitor unit and power supply unit must be secured more than 8mm. - · It must be 30mm or less, since the noise is generated from the wire which connects the external capacitor unit and power supply. It is necessary to twist the wire as short as possible. - · It is necessary to use wires which are rated for voltage of 600V or more. - · It must be used with the external capacitor unit (CR-HUT). - · For more information about the external capacitor unit and harness (H-IN-25), please refer to the optional parts page. - ■This specification can output alarm at AC input drop. When line voltage is low, the alarm outputs from CN2. The signal output period might vary depending on input and load conditions. Please evaluate thoroughly. Table 6.8 Description of the alarm (GHA700F-□-J1U1) | Alarm output condition | | Alarm output | |------------------------|---|--| | ALM | "High" when output can
not be maintained by AC | Open collector method
Good:Low (0.5V max at 1.5mA)
Bad :High or Open | | | input drop. | 40V 1.5mA max | Fig.6.8 Turn-off notice time by GHA700F- -J1U1 (Reference data) Fig.6.9 Internal circuit of alarm [·] Circuit of the alarm is isolated from input, output and FG. #### 6.2 Medical Isolation Grade ■GHA700F fit 2MOPP ■Type BF Fig.6.10 Medical Isolation Grade #### 6.3 Extermal capcitor on the output side ■When the load currnet changes rapidly, for output stability improvement, we recommend that you connect the capacitor to the output terminal. Tabel 6.9 External capacity on the output recommended capacity [µF] | Model | Output Voltage
[V] | Recommended capacity [µF] | |------------|-----------------------|---------------------------| | GHA700F-24 | 22.8≦Vo≦26.4 | 0 to 1,800 | | GHA700F-30 | 28.5≦Vo≦33.0 | 0 to 1,200 | | GHA700F-48 | 45.6≦Vo≦52.8 | 0 to 330 | | GHA700F-56 | 53.2≦Vo≦61.6 | 0 to 270 | #### Remarks: When load current changes rapidly, some specifications may not meet the spec. Please mount power supply after enough evaluation and comply with recommended amount of capacitor. If you exceed the rated amount of capacitor, output for power supply may be stopped or power supply may be unsteable. #### 6.4 Others - ■High voltage exist in the power supply for a few minutes after input voltage is stopped. Please pay attention to this during the maintence. - ■Notes for mounting - 1) All Mounting holes should be tight and secured. - ②Power supply should be mounted parallel to the mounting surface. - ③Avoid applying mechanical stress or shock to the power supply. - ■When power supply is energized or immidately after power supply stops working, power supply is still very hot, so please handle it with care.