1. Connection for Standard Use
 DHS-18

2. Wiring Input/Output Pin
 DHS-18
 2.1 Wiring input pin
 2.2 Wiring output pin

3. Function
 DHS-19
 3.1 Overcurrent protection
 3.2 Overvoltage protection
 3.3 Thermal protection
 3.4 Remote ON/OFF
 3.5 Remote sensing
 3.6 Adjustable voltage range
 3.7 Withstanding Voltage / Isolation Voltage

4. Series and Parallel Operation
 DHS-21
 4.1 Series operation
 4.2 Redundancy operation

5. Cleaning
 DHS-22

6. Lifetime expectancy depends on stress by temperature difference
 DHS-22
1 Connection for Standard Use

- In order to use the power supply, it is necessary to wire as shown in Fig.1.1 and external components in Table 1.1.
- Short the following pins to turn on the power module.
 - VIN, +VOUT, +S, and -VOUT (-S) (DHS200/250)

 - The DHS Series handles only the DC input.

2.1 Wiring Input/Output Pin

2.1.1 Wiring input pin

(1) External fuse

- Fuse is not built-in on input side. In order to protect the unit, install the normal blow type fuse on input side.
- When the input voltage from a front end unit is supplied to multiple units, install the normal blow type fuse in each unit.

<table>
<thead>
<tr>
<th>No.</th>
<th>Symbol</th>
<th>Component</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F1</td>
<td>Input fuse</td>
<td>3.1 (1) “External fuse”</td>
</tr>
<tr>
<td>2</td>
<td>Cy</td>
<td>Primary decoupling capacitor</td>
<td>3.1 (2) “Noise filter/Decoupling capacitor”</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>Noise filter</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cin</td>
<td>External capacitor on the input side</td>
<td>3.1 (3) “External capacitor on the input side”</td>
</tr>
<tr>
<td>5</td>
<td>Co</td>
<td>External capacitor on the output side</td>
<td>3.2 “Wiring output pin”</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>Heatsink</td>
<td>“Option parts”</td>
</tr>
</tbody>
</table>

(2) Noise filter/Decoupling capacitor

- Install an external noise filter and a decoupling capacitor C_y for low line-noise and for stable operation of the power supply.
- Install a correspondence filter, if a noise standard meeting is required or if the surge voltage may be applied to the unit.
- Install a primary decoupling capacitor C_y, with more than 470pF, near the input pins (within 50mm from the pins).
- When the total capacitance of the primary decoupling capacitor is more than 8800pF, the nominal value in the specification may not be met by the Hi-Pot test between input and output.

In this case, it is that a capacitor should be installed between output and FG.

(3) External capacitor on the Input side.

- Install an external capacitor Cin between +VIN and -VIN input pins for low line-noise and for stable operation of the power supply.
 - DHS50A/100A : more than 22μF
 - DHS200A : more than 47μF
 - DHS50B/100B/250B : more than 0.1μF
- When the line inductance is high or ambient temperature is lower than -20°C, please increase Cin value more than the value indicated above.
- When the line impedance is high or the input voltage rise quickly at start-up (less than 10s), install a capacitor Cin between +VIN and -VIN input pins (within 50mm from pins).
 - DHS50B/100B : more than 10μF
 - DHS250B : more than 22μF

(4) Input voltage range/Input current range

- The specification of input ripple voltage is shown as below.
 - Ripple voltage DHS50A/100A/200A : less than 10Vp-p
 - DHS50B/100B/250B : less than 20Vp-p
- Make sure that the voltage fluctuation, including the ripple voltage, will not exceed the input voltage range.
- Use a front end unit with enough power, considering the start-up current Ip of this unit.

Table 1.1 External components

<table>
<thead>
<tr>
<th>No.</th>
<th>Symbol</th>
<th>Component</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
<td>Input fuse</td>
<td>3.1 (1) “External fuse”</td>
</tr>
<tr>
<td></td>
<td>Cy</td>
<td>Primary decoupling capacitor</td>
<td>3.1 (2) “Noise filter/Decoupling capacitor”</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Noise filter</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cin</td>
<td>External capacitor on the input side</td>
<td>3.1 (3) “External capacitor on the input side”</td>
</tr>
<tr>
<td>5</td>
<td>Co</td>
<td>External capacitor on the output side</td>
<td>3.2 “Wiring output pin”</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>Heatsink</td>
<td>“Option parts”</td>
</tr>
</tbody>
</table>

*Refer to our website.

2.2 Wiring Output Pin

(2) Noise filter/Decoupling capacitor

- Install an external noise filter and a decoupling capacitor C_y for low line-noise and for stable operation of the power supply.
- Install a noise filter, if a noise standard meeting is required or if the surge voltage may be applied to the unit.
- Install a primary decoupling capacitor C_y, with more than 470pF, near the input pins (within 50mm from the pins).
- When the total capacitance of the primary decoupling capacitor is more than 8800pF, the nominal value in the specification may not be met by the Hi-Pot test between input and output.

In this case, it is that a capacitor should be installed between output and FG.
(5) Operation with AC input
■ The DHS series handles only for the DC input. A front end unit (AC/DC unit) is required when the DHS series is operated with AC input.

(6) Reverse input voltage protection
■ Avoid the reverse polarity input voltage. It will break the power supply.
It is possible to protect the unit from the reverse input voltage by installing an external diode.

2.2 Wiring output pin
■ Install an external capacitor Co between +VOUT and -VOUT pins for stable operation of the power supply.
Recommended capacitance of Co is shown in Table 2.2.
■ Select the high frequency type capacitor. Output ripple and start-up waveform may be influenced by ESR ESL of the capacitor and the wiring impedance.
■ Install a capacitor Co near the output pins (within 50mm from the pins).

Table 2.2 Recommended capacitance Co [μF]

<table>
<thead>
<tr>
<th>Output voltage (V)</th>
<th>Model</th>
<th>Tempature of Base plate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tbp=0〜+100°C</td>
</tr>
<tr>
<td>3.3</td>
<td>DHS50/100</td>
<td>2200</td>
</tr>
<tr>
<td>5</td>
<td>DHS200/250</td>
<td>2200</td>
</tr>
<tr>
<td>7.5</td>
<td>DHS50/100</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>DHS200/250</td>
<td>470</td>
</tr>
<tr>
<td>15</td>
<td>DHS50/100</td>
<td>470</td>
</tr>
<tr>
<td>24</td>
<td>DHS200/250</td>
<td>220</td>
</tr>
<tr>
<td>48</td>
<td>-</td>
<td>330</td>
</tr>
</tbody>
</table>

■ The specified ripple and ripple noise are measured by the method introduced in Fig. 2.5.

3 Function

3.1 Overcurrent protection
■ Over Current Protection (OCP) is built in and works over 105% of the rated current or higher. However, use in an over current situation must be avoided whenever possible. The output voltage of the power module will recover automatically if the fault causing over current is corrected.
When the output voltage drops after OCP works, the power module enters a "hiccups mode" where it repeatedly turns on and off at a certain frequency.

3.2 Overvoltage protection
■ Over Voltage Protection (OVP) is built in. When OVP works, output voltage can be recovered by shutting down DC input for at least one second or by turning off the remote control switch for one second without shutting down the DC input. The recovery time varies according to input voltage and input capacitance.

Remarks:
Note that devices inside the power module may fail when a voltage greater than the rated output voltage is applied from an external power supply to the output terminal of the power module. This could happen in in-coming inspections that include OVP function test or when voltage is applied from the load circuit. OVP can be tested by using the TRM terminal. Consult us for details.

3.3 Thermal protection
■ Over Temperature Protection (OTP) is built in. If the base plate temperature exceeds 100°C, OTP will work, causing the output voltage to drop. Output voltage can be recovered by shutting down DC input for at least one second or by turning RC off for one second without shutting down the DC input.
3.4 Remote ON/OFF

- The remote ON/OFF function is incorporated in the input circuit and operated with RC and -VIN.

<table>
<thead>
<tr>
<th>Table 3.1 Remote ON/OFF Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON/OFF logic</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- When RC is at low level, a current of 0.5mA typ will flow out. When Vcc is used, keep it within the following rage: 3.5 ≤ VCC ≤ 7V.
- When remote ON/OFF is not used, short RC and -VIN.

3.5 Remote sensing

(1) When Remote Sensing is Not Used

![Fig. 3.2 When Remote Sensing is Not Used (DHS200/250)]

- When remote sensing is not used, make sure +VOUT and +S are shorted, and that -VOUT and -S are shorted as well.
- Keep the patterns between +S and +VOUT and between -S and -VOUT as short as possible. Avoid a looping pattern. If noise enters the loop, the operation of the power module will become unstable.

(2) When Remote Sensing is Used

![Fig. 3.3 When Remote Sensing is Used (DHS200/250)]

- Using remote sensing with long wires may cause output voltage to become unstable. Consult us if long sensing wiring is necessary.
- Sensing patterns or wires should be as short as possible. If wires are used, use either twisted-pair or shielded wires.

3.6 Adjustable voltage range

- Output voltage between +VOUT and -VOUT can be adjusted by connecting external resistors to TRM.
- When the output voltage adjustment is not used, open the TRM pin respectively.
- When the output voltage adjustment is used, note that the over-voltage protection circuit operates when the output voltage sets too high.
- The wiring to the potentiometer should be as short as possible.

As the ambient temperature fluctuation characteristics deteriorates depending on the types of resistors and potentiometers used, please use resistors and potentiometers of the following specifications:

- Resistors: Metal film type, coefficient less than ±100ppm/°C
- Potentiometers: Cermet type, coefficient less than ±300ppm/°C

- When the input voltage is 60 - 66VDC or 200 - 250VDC, the output voltage adjustment range becomes as shown in fig. 3.4.
(1) Output voltage adjusting

Output voltage can be adjusted by connecting an external potentiometer (VR1) and resistors (R1 and R2) as shown in Fig. 3.6. Output voltage will increase if the resistance between 1 and 2 is reduced by turning the potentiometer clockwise.

Recommended values for external components are shown in Table 3.3. Consult us if the power module is used in a different configuration.

![Fig. 3.6 Connecting External Parts (DHS250)](image)

Table 3.2 Recommended Values of External Resistors (DHS250, DHS100)

<table>
<thead>
<tr>
<th>No.</th>
<th>Output Voltage</th>
<th>VOUT±5% R1</th>
<th>VOUT±10% R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.3V 5.1kΩ</td>
<td>3.3kΩ</td>
<td>3.3kΩ</td>
</tr>
<tr>
<td>2</td>
<td>5V 12kΩ</td>
<td>8.2kΩ</td>
<td>8.2kΩ</td>
</tr>
<tr>
<td>3</td>
<td>12V 15kΩ</td>
<td>10kΩ</td>
<td>10kΩ</td>
</tr>
<tr>
<td>4</td>
<td>15V 22kΩ</td>
<td>15kΩ</td>
<td>15kΩ</td>
</tr>
<tr>
<td>5</td>
<td>24V 39kΩ</td>
<td>27kΩ</td>
<td>27kΩ</td>
</tr>
<tr>
<td>6</td>
<td>28V 47kΩ</td>
<td>33kΩ</td>
<td>33kΩ</td>
</tr>
</tbody>
</table>

DHS200, DHS250

(2) Output voltage increasing

By connecting the external resistor (RU), output voltage becomes adjustable to increase. The external resistor (RU) is calculated the following equation:

\[
RU = [3.0 \times \frac{V_{ref}}{V_{out}} - 1.51] \times \frac{V_{out}}{V_{ref}} + 0.01
\]

![Fig. 3.7 Connection for output voltage increasing (DHS200/250)](image)

(3) Output voltage decreasing

By connecting the external resistor (RD), output voltage becomes adjustable to decrease. The external resistor (RD) is calculated the following equation:

\[
RD = \frac{1.51 \times V_{ref} - 0.01}{1.0 - \frac{V_{out}}{V_{ref}}} [kΩ]
\]

![Fig. 3.8 Connection for output voltage decreasing (DHS200/250)](image)

3.7 Withstanding Voltage / Isolation Voltage

When testing the withstanding voltage, make sure the voltage is increased gradually. When turning off, reduce the voltage gradually by using the dial of the hi-pot tester. Do not use a voltage tester with a timer as it may generate voltage several times as large as the applied voltage.

4 Series and Parallel Operation

4.1 Series operation

Series operation is available by connecting the outputs of two or more power supplies, as shown below. Output current in series connection should be lower than the lowest rated current in each unit.
4.2 Redundancy operation
- Parallel operation is not possible.
- Redundancy operation is available by wiring as shown below.

![Diagram of Redundancy Operation]

Even a slight difference in output voltage can affect the balance between the values of I1 and I2.
Please make sure that the value of I3 does not exceed the rated current of a power supply.

\[I_3 \leq \text{the rated current value} \]

5 Cleaning
- Clean the soldered side of the power module with a brush.
- Prevent liquid from getting into the power module. Do not clean by soaking the power module into liquid.
- Do not allow solvent to come in contact with product labels or resin cases as this may change the color of the resin case or cause deletion of the letters printed on the product label.
- After cleaning, dry the power modules well.

6 Lifetime expectancy depends on stress by temperature difference
- Regarding lifetime expectancy design of solder joint, following contents must be considered.
 - It must be careful that the soldering joint is stressed by temperature rise and down which is occurred by self-heating and ambient temperature change.
 - The stress is accelerated by thermal-cycling, therefore the temperature difference should be minimized as much as possible if temperature rise and down is occurred frequently.
- Product lifetime expectancy depends on the aluminum base plate central temperature difference (\(\Delta T_c \)) and number of cycling in a day is shown in Fig.6.1.
 - If the aluminum base plate center part temperature changes frequently by changing output load factor etc., the above the lifetime expectancy design should be applied as well.

Please contact us for details.

![Graph of Lifetime expectancy against rise/fall temperature difference]

Fig6.1 Lifetime expectancy against rise/fall temperature difference